Heterogeneous Causal Effects and Sample Selection Bias
نویسندگان
چکیده
منابع مشابه
Recovering Causal Effects from Selection Bias
Controlling for selection and confounding biases are two of the most challenging problems that appear in data analysis in the empirical sciences as well as in artificial intelligence tasks. The combination of previously studied methods for each of these biases in isolation is not directly applicable to certain non-trivial cases in which selection and confounding biases are simultaneously presen...
متن کاملA Selection Bias Approach to Sensitivity Analysis for Causal Effects
The estimation of causal effects has a revered place in all fields of empirical political science, but a large volume of methodological and applied work ignores a fundamental fact: most people are skeptical of estimated causal effects. In particular, researchers are often worried about the assumption of no omitted variables or no unmeasured confounders. This paper combines two approaches to sen...
متن کاملSample Selection Bias Correction Theory
This paper presents a theoretical analysis of sample selection bias correction. The sample bias correction technique commonly used in machine learning consists of reweighting the cost of an error on each training point of a biased sample to more closely reflect the unbiased distribution. This relies on weights derived by various estimation techniques based on finite samples. We analyze the effe...
متن کاملModels for Sample Selection Bias
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...
متن کاملSmall sample bias and selection bias effects in multivariate calibration, exemplified for OLS and PLS regressions
In multivariate calibration by for example ordinary least squares (OLS) multiple regression or by partial least squares regression (PLSR) the predictor ŷ(x) is perfect for the calibration sample itself, in the sense that the regression of observed y on predicted ŷ(x) is y = ŷ(x). Plots of y against ŷ(x) are much used to illustrate how good the calibration is and how well prediction works. Usual...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sociological Science
سال: 2015
ISSN: 2330-6696
DOI: 10.15195/v2.a17